Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38472782

RESUMO

Pectin was extracted from cocoa husks, a food-processing biowaste, using an autoclave approach. A Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize pectin extraction. Three factors including extraction time (5-40 min), temperature (105-135 °C), and solid to liquid ratios (SLRs) (10-30 w/v) were employed. Results showed that the optimal conditions for high cocoa-husk-pectin (CHP) yield of 26.22% was 105 °C for 5 min with an SLR at 20 w/v. The physicochemical characteristics of CHP were compared with commercial high-methoxyl pectin (CHMP) and commercial low-methoxyl pectin (CLMP). CHP was classified as low-methoxyl pectin, with a degree of esterification at 34.74% and methoxyl content of 5.08%. The galacturonic acid content of CHP was 32.71% which was lower than CHMP (72.69%) and CLMP (41.24%). The intrinsic viscosity and viscosity-average molecular weight was similar to CLMP but higher than CHMP. No significant differences in water-holding capacity were found among samples. CHP showed higher oil-holding capacity but lower solubility compared with commercial pectin. CHP solutions showed pseudoplastic behavior. The viscosities of CHP solutions improved at increasing concentrations and decreasing pH. The CHP solution viscosities were lower than CLMP at the same condition. The viscoelastic properties of CHP solutions increased at higher concentrations, with the optimal value at pH 3. CHP showed no genotoxicity when assayed using the Ames test. Autoclave extraction as an accessible fast method showed potential for high pectin yield recovery from cocoa husks.

2.
Foods ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002234

RESUMO

Roasted sacha inchi seeds are now commercialized as a health food product, but the influence of roasting methods on their proclaimed health effects has yet to be explored. This study investigated the total phenolic contents (TPCs), antioxidant potential, and inhibitory activities of raw and roasted sacha inchi seeds in vitro. Individual phenolics in raw seeds were also identified in an attempt to explain the bioactivities of the seeds. The results suggested that roasting in a cooking pan, vacuum oven, and tray dryer had distinct impact on TPC in sacha inchi seeds, and thus differentially altered their antioxidant and inhibitory properties. Seeds that underwent roasting exhibited 1.5-2.7-fold higher antioxidant potentials than raw seeds. Certain roasting methods provided the products with anti-α-amylase and anti-cholinesterase activities, while inhibitions of these enzymes were not detected in raw seeds. Roasted seeds also possessed superior anti-lipase and anti-glycation activities when compared with raw seeds (up to 1.7- and 4.8-fold, respectively). The inhibitory properties observed in the seed samples might be attributed to their p-coumaric acid, ferulic acid, and quercetin, as these potential enzyme inhibitors were predominant in raw seeds. The overall results showed that pan-roasting could be used to obtain relatively high health benefits from the antioxidant and inhibitory activities of sacha inchi seeds. The information obtained from this study may serve as the basis for the proper processing of sacha inchi seeds to optimize their functional food and nutraceutical applications.

3.
Foods ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835175

RESUMO

Food fraud has long been regarded as a major issue within the food industry and is associated with serious economic and public health concerns. Economically motivated adulteration, the most common form of food fraud, has consequences for human health, ranging from mild to life-threatening conditions. Despite the potential harm and public health threats posed by food fraud, limited information on incidents causing illness has been reported. Enhancing the food control system on the Asian continent has become crucial for global health and trade considerations. Food fraud databases serve as valuable tools, assisting both the food industry and regulatory bodies in mitigating the vulnerabilities associated with fraudulent practices. However, the availability of accessible food fraud databases for Asian countries has been restricted. This review highlights detrimental food fraud cases originating in Asian countries, including sibutramine in dietary supplements, plasticizer contamination, gutter oil, and the adulteration of milk. This comprehensive analysis encompasses various facets, such as incident occurrences, adverse health effects, regulatory frameworks, and mitigation strategies.

4.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406288

RESUMO

The objective of this study was to explore the influence of nanocellulose type (nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC)) and concentrations (0.05-0.20%, w/w) on the physicochemical properties, microstructure, and in vitro digestion of ß-carotene loaded emulsions and ß-carotene bioaccessibility. The optimum conditions for the formation of stable ß-carotene loaded emulsions were found when NCC was used as a stabilizer at a concentration of 0.2% w/w. This was due to the rod-shaped structure of NCC, which led to more stable emulsions with smaller droplet size and reduced flocculation. During the in vitro gastrointestinal digestion, NFC emulsions at increased concentrations were found to retard free fatty acid (FFA) release from the emulsions and reduce the bioaccessibility of ß-carotene. On the other hand, NCC emulsions at concentrations of 0.2% w/w promoted lipolysis and demonstrated highest ß-carotene bioavailability. Hence, these emulsions could be used for the delivery of ß-carotene with potential applications in the development of functional foods and nutraceuticals.

5.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163720

RESUMO

The Food and Agriculture Organization of the United Nations (FAO) estimates that more than 500 million people, especially in Asia and Africa, are suffering from malnutrition. Recently, livestock farming has increased to supply high-quality protein, with consequent impact on the global environment. Alternative food sources with high nutritive values that can substitute livestock demands are urgently required. Recently, edible crickets have been promoted by the FAO to ameliorate the food crisis. In this review, the distribution, nutritive values, health-promoting properties (antioxidant, anti-inflammatory, anti-diabetic and anti-obesity), safety, allergenicity as well as the potential hazards and risks for human consumption are summarized. Cricket farming may help to realize the United Nations sustainable development goal No. 2 Zero Hunger. The sustainability of cricket farming is also discussed in comparison with other livestock. The findings imply that edible crickets are safe for daily intake as a healthy alternative diet due to their high protein content and health-promoting properties. Appropriate use of edible crickets in the food and nutraceutical industries represents a global business potential. However, people who are allergic to shellfish should pay attention on cricket allergy. Thus, the objective of this review was to present in-depth and up-to-date information on edible crickets to advocate and enhance public perception of cricket-based food.


Assuntos
Gryllidae , Hipersensibilidade , Alérgenos , Animais , Pisos e Cobertura de Pisos , Cadeia Alimentar , Humanos , Valor Nutritivo
6.
Foods ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34574228

RESUMO

Currently, research on the accumulation of microplastics (MPs) in the marine food web is being highlighted. An accurate and reliable digestion method to extract and isolate MPs from complex food matrices has seldom been validated. This study aimed to compare the efficacy of MP isolation among enzymatic-, oxidative-, and the combination of two digestion methods on red seaweed, Gracilaria fisheri. The dried seaweed sample was digested using three different methods under various conditions using enzymes (cellulase and protease), 30% H2O2, and a combination of enzymes and 30% H2O2. The method possessing the best digestion efficiency and polymer recovery rate of MPs was selected, and its effect on spiked plastic polymer integrity was analyzed by Raman spectroscopy. As a result, the enzymatic method rendered moderate digestion efficiency (59.3-63.7%) and high polymer recovery rate (94.7-98.9%). The oxidative method using 30% H2O2 showed high digestion efficiency (93.0-96.3%) and high polymer recovery rate (>98%). The combination method was the most effective method in terms of digestion efficiency, polymer recovery rate, and expenditure of digestion time. The method also showed no chemical changes in the spiked plastic polymers (PE, PP, PS, PVC, and PET) after the digestion process. All the spiked plastic polymers were identifiable using Raman spectroscopy.

7.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449125

RESUMO

During wine fermentations, Saccharomyces cerevisiae starts to excrete antimicrobial peptides (AMPs) into the growth medium that induce death of non-Saccharomyces yeasts at the end of exponential growth phase (24-48 h). Those AMPs were found to derive from the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). On the other hand, the early death of non-Saccharomyces yeasts during wine fermentations was also found to be mediated by a cell-to-cell contact mechanism. Since GAPDH is a cell-wall-associated protein in S. cerevisiae, we put forward the hypothesis that the GAPDH-derived AMPs could accumulate on the cell surface of S. cerevisiae, thus inducing death of non-Saccharomyces yeasts by cell-to-cell contact. Here we show that 48-h grown (stationary phase) cells of S. cerevisiae induce death of Hanseniaspora guilliermondii and Lachancea thermotolerans by direct cell-to-cell contact, while 12-h grown cells (mid-exponential phase) do not. Immunological tests performed with a specific polyclonal antibody against the GAPDH-derived AMPs revealed their presence in the cell wall of S. cerevisiae cells grown for 48 h, but not for 12 h. Taken together, our data show that accumulation of GAPDH-derived AMPs on the cell surface of S. cerevisiae is one of the factors underlying death of non-Saccharomyces yeasts by cell-to-cell contact.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hanseniaspora/metabolismo , Interações Microbianas/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomycetales/metabolismo , Membrana Celular/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
8.
Appl Microbiol Biotechnol ; 99(23): 10191-207, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26257263

RESUMO

In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were alanine, arginine, asparagine, aspartic acid, glutamine, isoleucine, ammonium sulphate, serine, valine and mixtures of 19 amino acids and of 19 amino acids plus ammonium sulphate (for S. cerevisiae), serine (for L. thermotolerans), alanine (for H. uvarum), alanine and asparagine (for M. pulcherrima), arginine, asparagine, glutamine, isoleucine and mixture of 19 amino acids (for T. delbrueckii). Furthermore, our results showed a clear positive effect of complex mixtures of N-sources on S. cerevisiae and on T. delbrueckii (although to a lesser extent) as to all performance parameters studied, whereas for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally, the influences of N-sources observed for T. delbrueckii and H. uvarum resembled those of S. cerevisiae the most and the least, respectively. Overall, this work contributes to an improved understanding of how different N-sources affect growth, glucose consumption and ethanol production of wine-related yeast species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during wine fermentations.


Assuntos
Etanol/metabolismo , Fermentação , Nitrogênio/metabolismo , Vinho/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Aminoácidos/metabolismo
9.
FEMS Microbiol Lett ; 362(14)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26109361

RESUMO

The roles of cell-to-cell contact and antimicrobial peptides in the early death of Lachanchea thermotolerans CBS2803 during anaerobic, mixed-culture fermentations with Saccharomyces cerevisiae S101 were investigated using a commercially available, double-compartment fermentation system separated by cellulose membranes with different pore sizes, i.e. 1000 kDa for mixed- and single-culture fermentations, and 1000 and 3.5-5 kDa for compartmentalized-culture fermentations. SDS-PAGE and gel filtration chromatography were used to determine an antimicrobial peptidic fraction in the fermentations. Our results showed comparable amounts of the antimicrobial peptidic fraction in the inner compartments of the mixed-culture and 1000 kDa compartmentalized-culture fermentations containing L. thermotolerans after 4 days of fermentation, but a lower death rate of L. thermotolerans in the 1000 kDa compartmentalized-culture fermentation than in the mixed-culture fermentation. Furthermore, L. thermotolerans died off even more slowly in the 3.5-5 kDa than in the 1000 kDa compartmentalized-culture fermentation, which coincided with the presence of less of the antimicrobial peptidic fraction in the inner compartment of that fermentation than of the 1000 kDa compartmentalized-culture fermentation. Taken together, these results indicate that the death of L. thermotolerans in mixed cultures with S. cerevisiae is caused by a combination of cell-to-cell contact and antimicrobial peptides.


Assuntos
Antifúngicos/metabolismo , Fermentação , Peptídeos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Saccharomycetales/fisiologia , Vinho/microbiologia , Contagem de Colônia Microbiana , Eletroforese em Gel de Poliacrilamida , Etanol/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...